

Bestimmung der Singulett-Triplett-Aufspaltung von Diradikalen mit Hilfe der Sauerstoff-Abfang-Technik

Wolfgang R. Roth*, Joerg Ruhkamp und Hans-Werner Lennartz

Fakultät für Chemie der Universität Bochum, Postfach 10 21 48, W-4630 Bochum 1 Eingegangen am 20. Februar 1991

Key Words: Diradicals / Gas-phase kinetics / Oxygen-trapping technique / Singlet-triplet splitting

Determination of the Singlet-Triplet Splitting of Diradicals by Oxygen-Trapping

The diradical 2, generated by thermolysis of 7-methylenebicyclo[3.2.0]hept-1-ene (1), can be trapped by oxygen in the gasphase. From the different trapping rates with and without added SF₆ the intersystem crossing rates of the diradical have been deduced. From their temperature dependance the singlet-triplet splitting is calculated to be 7.4 kcal mol⁻¹ with

Während die Grundzustands-Multiplizität von Diradikalen mit Hilfe des Curie-Weiß-Gesetzes aus der Temperaturabhängigkeit des Triplett-ESR-Signals abgeleitet werden kann, gibt es bis heute keine experimentelle Methode zur Bestimmung des Energieunterschieds zwischen dem Singulett- und Triplettzustand. Wir sind hier auf quantenmechanische Rechnungen angewiesen, wobei diese Rechnungen teilweise den ESR-Messungen widersprechende Aussagen über die Grundzustands-Multiplizität machen¹⁾. Wir berichten hier über eine neue Methode, um die Enthalpiedifferenz von Singulett-Triplett-Diradikalpaaren in der Gasphase zu bestimmen.

7-Methylenbicyclo[3.2.0]hept-1-en (1)²⁾ erfährt bei Temperaturen um 150°C eine entartete Umlagerung ($1a \rightleftharpoons 1b$), die bei substituierten Derivaten direkt beobachtet werden kann²⁾. Das intermediäre Diradikal 2 kann in der Gasphase durch Sauerstoff abgefangen werden. Unterstellt man, daß Diradikale in Analogie zu freien Radikalen stoßkontrolliert mit Sauerstoff reagieren³⁾, dann sollte aus der Sauerstoffthe triplet being the ground state. The triplet is protected by an enthalpy barrier of 13.0 kcal mol⁻¹ against recombination of the unpaired electrons $(2-tr \rightarrow 1)$. From the heat of hydrogenation of 1 the heat of formation of 1, 2-s and 2-tr is derived.

und Temperaturabhängigkeit dieser Reaktion die Bestimmung der Enthalpiedelle des intermediären Diradikals 2 möglich sein.

Wir haben bei fünf Temperaturen zwischen 150 und 190°C und jeweils bis zu 18 Drucken von 1–750 Torr Sauerstoff die Geschwindigkeitskonstanten pseudo-erster Ordnung der Abfangreaktion in der Gasphase bestimmt (s.Tab.4), wobei die Apparatur sowie die Meßtechnik gleich der in Lit.⁴⁾ war. Hinweise, daß diese Reaktion mit der wechselseitigen Singulett \rightleftharpoons Triplett-Umlagerung konkurriert, ergaben sich aus der Beobachtung, daß die Abfangreaktion im Bereich niedriger Sauerstoff-Konzentrationen von der Stoßpartner-Konzentration abhängt. In Abb. 1 ist diese Abhängigkeit für den Stoßpartner SF₆ für die Reaktion bei 10 und 50 Torr Sauerstoff dargestellt.

100.0

Chem. Ber. 124 (1991) 2047-2051 © VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1991 0009-2940/91/0909-2047 \$ 3.50+.25/0

Diese Beobachtung läßt sich verstehen, wenn wir unterstellen, daß der Stoßpartner die Einstellung des Singulett=Triplett-Gleichgewichts katalysiert. Wie Abb. 1 zeigt, wird bei hoher Stoßpartner-Konzentration ein Grenzwert erreicht, der anzeigt, daß hier das Multiplizitäts-Gleichgewicht eingestellt ist.

Ausgehend von dieser Beobachtung haben wir dann einen zweiten Satz von Geschwindigkeitskonstanten pseudoerster Ordnung für die Abfangreaktion bestimmt, wobei dieses Mal durch Zugabe von SF_6 ein Gesamtdruck von 750 Torr im Reaktionskolben eingestellt wurde. Hierdurch ist gewährleistet, daß zumindest im Bereich niedriger Sauerstoff-Konzentrationen das Multiplizitäts-Gleichgewicht etabliert ist.

Abb. 2. Abhängigkeit der Abfanggeschwindigkeit von der Sauerstoff-Konzentration bei unterschiedlichem Singulett-Triplett-Verhältnis ($T = 170.6^{\circ}$ C, $\circ = ohne$, $\bullet = mit SF_6$)

Die in Abb. 2 für 170.6 °C wiedergegebenen zwei Kurvenzüge der Abfanggeschwindigkeit bei unterschiedlichem Singulett-Triplett-Verhältnis enthalten zusammen mit der Aussage aus Abb. 1 alle Informationen, um die Geschwindigkeitskonstanten k_1 , k_2 , k_5 , k_6 und k_7 zu bestimmen.

Hierbei ist k_1 unmittelbar durch das bei großen Sauerstoff-Konzentrationen sich ausbildende Plateau gegeben (Abb. 2). Hier ist die Abfanggeschwindigkeit invariant gegen die Sauerstoff-Konzentration, was bedeutet, daß alle Diradikale abgefangen werden, und daß die Abfanggeschwindigkeit gleich k_1 wird.

Die Geschwindigkeit der Rückreaktion k_2 kann bei Kenntnis der Geschwindigkeitskonstanten k_3 bzw. k_4 aus dem bei kleinen Sauerstoff-Konzentrationen vorliegenden linearen Ast der SF₆-Kurve (s. Einschub in Abb. 2) abgeleitet werden. Als stoßkontrollierte Reaktionen sind k_3 und k_4 durch Gleichung (1)⁵ gegeben,

$$k = FN_{\rm A}(\sigma_{\rm a} + \sigma_{\rm b})^2 / 4(8\pi k T/\mu)^{1/2}$$
(1)

wobei N_A die Avogadrosche Zahl, σ_a und σ_b die Stoßquerschnitte der reagierenden Teilchen, k die Bolzmannkonstante, μ die reduzierte Masse und F ein Faktor ist, der die Spinstatistik berücksichtigt. Hieraus lassen sich k_3 und k_4 zu $\approx 10^{10} \text{ l mol}^{-1} \text{s}^{-1}$ abschätzen⁶. Im Hinblick auf die hierbei gemachten Annahmen ist die mit diesen Werten berechnete Geschwindigkeitskonstante k_2 mit einer gewissen Unsicherheit behaftet, wobei jedoch wegen der linearen Beziehung zwischen k_2 und k_3 bzw. k_4 diese Werte jeweils alle um den gleichen Faktor vom tatsächlichen Wert abweichen. Unbeschadet, daß die k_3 - bzw. k_4 -Werte mit einer gewissen Unsicherheit behaftet sind, ist ihre Temperaturabhängigkeit als stoßkontrollierte Reaktion jedoch eindeutig festgelegt, sie ist proportional zur Wurzel aus der Temperatur⁵. Hieraus resultiert, daß auch die Temperaturabhängigkeit von k_2 und damit die Enthalpiedelle des Diradikals **2** eindeutig gegeben ist. Der Fehler von k_2 schlägt sich nur im A-Faktor, d. h. in der Entropie des Diradikals, nieder.

Das Zurückbleiben der Sauerstoff- gegenüber der SF₆-Kurve in Abb. 2 ergibt sich aus dem mit zunehmender Sauerstoff-Konzentration sinkenden Triplett-Anteil des Diradikals, bedingt durch das zunehmend kleiner werdende Verhältnis der "Intersystem-Crossing-" zur Abfangreaktion. Das hat zur Folge, daß mit steigender Sauerstoff-Konzentration die Geschwindigkeit der Peroxidbildung zunehmend genauer durch die Summe $\{k_5 + k_3, [O_2]\}$ beschrieben wird. Bei vorgegebenem k_3 ist damit auch k_5 zugänglich. Damit kann aber über das aus der SF6-Kurve zugängliche Gleichgewicht der Spin-Isomeren auch k_6 berechnet werden. Aus dem obigen Zusammenhang ergibt sich, daß k5 unmittelbar von der Wahl des k_3 -Wertes abhängt, und daß damit auch das Verhältnis von k_5/k_6 direkt durch die Annahmen über k_3 bzw. k_4 bestimmt wird. Der Quotient k_5/k_6 ist jedoch bei konstantem Verhältnis k_3/k_4 unabhängig von den Absolutbeträgen von k_3 bzw. k_4 . Hieraus folgt, daß aus fehlerhaften Annahmen über k_3 bzw. k_4 zwar ein fehlerhafter Quotient k_5/k_6 resultiert, daß sich aber aus der korrekten Beschreibung der Temperaturabhängigkeit von k_3 bzw. k_4 auch zwangsläufig die korrekte Beschreibung der Temperaturabhängigkeit des Quotienten k_5/k_6 ergibt, die dann unmittelbar zu der Enthalpie-Differenz zwischen den Spinisomeren führt. Auch hier bedingt der Fehler von k_3 bzw. k_4 nur einen Fehler bezüglich der Entropie-, nicht der Enthalpiedifferenz zwischen dem Singulett- und Triplett-Diradikal.

Für die praktische Auswertung der Messungen sind wir so vorgegangen, daß wir die nach Schema 1 simulierte Reaktion mit einer Simplex-Routine⁷⁾ an die experimentellen Geschwindigkeitskonstanten der Tab. 4 angepaßt haben, wobei sich mit $k_3 = k_4 = 5 \cdot 10^8 \cdot T^{1/2}$ die in Tab. 1 aufgelisteten Geschwindigkeitskonstanten k_1, k_2, k_5, k_6 und k_7 er-

Tab. 1. Geschwindigkeitskonstanten k_1, k_2, k_5, k_6 und k_7 der Reaktionen nach Schema 1

Т [°C]	151.8	161.6	170.7	181.1	191.6	Ea ^{s)}	log A
k ₁ [s ⁻¹] ·10 ⁶	171.4	428.7	915.2	2208.	4916.	32.9±0.2	13.25±0.11
k ₂ [s ⁻¹] ·10 ⁻⁵	126.3	161.7	175.4	2220.	244.8	6.5±0.5	10.47±0.27
k ₅ [s ⁻¹] ·10 ⁻⁵	37.4	34.9	37.2	35.3	37.4	0.0±0.5	6.58±0.24
k₆ [s⁻¹] ·10⁻⁵	2.81	3.19	4.10) 4.3	9 6.16	7.4±0.9	9.28±0.45
$k_7 \ [l \ mol^{-1} \ s^{-1}] \cdot 10^{-2}$	27.6	27.1	27.5	27.9	27.8	0.0±0.3	3.40±0.11

^{a)} [kcal mol⁻¹].

geben, aus deren Temperaturabhängigkeit die entsprechenden in Tab. 1 angegebenen Arrhenius-Parameter resultieren.

Für die Beurteilung der Signifikanz der Werte ist diese Art der Auswertung jedoch wenig geeignet, da bei der Berechnung der Arrhenius-Parameter die sehr unterschiedlichen Unsicherheitsgrenzen der zugrundeliegenden Geschwindigkeitskonstanten nicht, berücksichtigt werden. Günstiger ist es, bei der Simulation direkt die Arrhenius-Parameter der einzelnen Geschwindigkeitskonstanten als Variable zu verwenden. Dann werden Meß- und Rechenwert direkt miteinander verknüpft, und eine Signifikanzanalyse⁸⁾ zeigt unmittelbar die durch Wahl und Genauigkeit der Meßdaten bedingte Grenze der Aussage. Das Ergebnis dieser Auswertung ist in Tab. 2 zusammengestellt, wobei die Fehlerangaben sich hier auf eine Vertrauensgrenze von 95% beziehen.

Wie oben dargelegt, sind für k_2 , k_5 und k_6 im Hinblick auf die bezüglich k_3 und k_4 gemachten Annahmen verbindliche Aussagen nur über die Temperaturabhängigkeit von k_2 und k_5/k_6 möglich. Signifikante Aussagen sind demnach nur für die Enthalpie-Delle des Diradikals bzw. seine Singulett-Triplett-Aufspaltung möglich, wobei wir für die Signifikanzanalyse der Delle nur die Daten der SF₆-Kurven und für die der Singulett-Triplett-Aufspaltung nur die der reinen O₂-Kurven herangezogen haben.

Tab. 2. Aktivierungs- und Reaktionsparameter

Reaktion	$E_{a}^{a)}$	log A	Δ <i>H</i> ^{+ a)} (170 °C)	$\frac{\Delta S^{\pm b)}}{(170^{\circ}C)}$	$\Delta H_{R}^{a)}$
$1 \rightarrow 2\text{-s}$ $2\text{-tr} \rightarrow 1$ $2\text{-s} \rightleftharpoons 2\text{-tr}$	32.8 ± 0.5 13.9 ± 1.4	13.12±0.25 _	31.9±0.5 13.0±1.4	-1.3 <u>+</u> 1.1 -	7.4 ± 2.1

^{a)} [kcal mol⁻¹]. - ^{b)} [cal K⁻¹mol⁻¹].

Über die Daten der Tab. 2 sind die Bildungsenthalpien des Singulett- und Triplett-Diradikals 2 mit der Bildungsenthalpie von 1 verknüpft, die ihrerseits über die Hydrierwärme von 1 (s. exp. Teil) mit der Bildungsenthalpie der Reaktionsprodukte 3^{21} und 4^{21} verbunden ist (s. Tab. 3). Die Bildungsenthalpien von 3 und 4 haben wir Kraftfeld-Rechnungen entnommen, die im Bereich gesättigter Kohlenwasserstoffe sehr zuverlässig sind und hier Unsicherheitsgrenzen haben, die denen experimenteller Werte nahekommen⁹.

	H ₂ Pd/C		\square
1	$\Delta H_{\rm H} = -08.3$	3 (21.9%)	4 (78.1%)

Tab. 3. Bildungsenthalpien

Verbindung	3	4	1	2-s	2-tr
$\Delta H_{\rm f}^{\circ}$ [kcal mol ⁻¹]	-7.76 ^{a)}	-6.94^{a}	61.2	87.5	80.1

a) MM2ERW-Kraftfeld¹⁰.

Die Beobachtung, daß der Singulett Triplett-Übergang durch SF₆ katalysiert wird, ist ein typisches Beispiel des wohlbekannten "Schweratom-Effektes"^{11a}). Ein analoger Effekt ist auch für Sauerstoff postuliert worden¹²). Wie die obige kinetische Analyse zeigt, wird eine solche Katalyse beim Diradikal 2 jedoch nicht beobachtet. Zu einem gleichen Ergebnis waren wir auch aufgrund der Analyse der Sauerstoff-Abfang-Kinetik beim 2-Methylen-1,4-cyclopentadiyl gekommen¹³). Ein solches Verhalten erscheint auch plausibel, wenn die Abfangreaktion stoßkontrolliert erfolgt. Die Katalyse einer solchen Reaktion ist naturgemäß dann nicht mehr möglich.

Die hier vorgestellte Methode zur Bestimmung der Singulett-Triplett-Aufspaltung ist nur möglich, wenn die Intersystem-Crossing-Geschwindigkeit und die Peroxidbildung von vergleichbarer Größe sind, so daß durch Variation der Sauerstoff-Konzentration der Bereich von $k_{\rm ISC} \gg k_{\rm per} \cdot [O_2]$ bis $k_{\rm ISC} \ll k_{\rm Per} \cdot [O_2]$ beobachtet werden kann.

Das Diradikal 2 ist ein Vertreter der "disjoint diradicals", für die aufgrund theoretischer Überlegungen ein Singulett-Grundzustand vorausgesagt worden war^{11b)}. Alle Versuche einer experimentellen Bestätigung schlugen jedoch fehl. Beim Tetramethylenethan $5^{14)}$ sowie seinen planaren Derivaten $6^{15)}$ und $7^{16)}$ zeigt die Intensität der ESR-Signale eine dem Curie-Weiß-Gesetz entsprechende Temperaturabhängigkeit.

Diese Beobachtung läßt keinen Zweifel an einem Triplett-Grundzustand, erlaubt jedoch keine Aussage, um wieviel höher der Singulett-Zustand liegt. Diese Antwort kann nun für das Diradikal 2 gegeben werden. Wie Tab. 2 zeigt, ist auch hier das Triplett der Grundzustand, separiert um 7.4 kcal mol⁻¹ von dem höher liegenden Singulett. Ein Überdenken des theoretischen Postulats eines Singulett-Grundzustands von "disjoint diradicals" scheint notwendig.

Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie danken wir für die Unterstützung dieser Arbeit durch Sachmittel.

Experimenteller Teil

Thermolyse von 7-Methylenbicyclo[3.2.0]hept-1-en (1): Verbindung 1 wurde in der in Lit.⁴⁾ beschriebenen Apparatur thermolysiert und das Diradikal 2 mit Sauerstoff abgefangen (Meßtechnik wie in Lit.⁴⁾). Meßbedingungen und ermittelte Geschwindigkeitskonstanten enthält Tab. 4.

Hydrierwärme-Messungen: Kalorimeter, Meßmethode sowie Genauigkeit sind in Lit.¹⁷⁾ beschrieben, die Daten der Messungen in Tab. 5 zusammengestellt. Die Hydrierungen wurden bei 25°C an einem Pd/C-Katalysator (5%) in Isooctan durchgeführt. Die Daten sind um Lösungswärme-, nicht jedoch um Verdampfungswärme-Effekte korrigiert¹⁸⁾.

Tab. 4. Geschwindigkeitskonstanten pseudo-erster Ordnung der Abnahme von 1

T [°C]	152.0	151.7	151.7	151.8	151.7	151.8	151.7	151.7	т [°С]	181.1	181.2	181.2	181.3	181.3	181.1	181.2	181.1
O2 [mol l-1] ·106	42	216	406	781	1864	3187	7019	26246	O ₂ [mol l ⁻¹] ·10 ⁶	3601	9996	18586	29830	25257	25	68	199
SF6[mol 1-1].106	0	0	0	0	0	0	0	0	SF6[mol 1 -1].106	0	0	0	0	0	26449	26373	26251
k _{Ab} [s ⁻¹]·10 ⁷	298.5	490.5	645.8	834.3	1078.	1285.	1473.	1637.	k _{Ab} [s ⁻¹]·10 ⁸	1438.	1829.	1974.	2072.	2042.	202.3	482.3	964.0
T [°C]	152.0	151.8	151.9	152.0	151.8	151.8	151.8	151.7	T [°C]	181.1	181.1	181.1	181.0	181.0	181.0	181.0	181.0
O2 [mol l -1] ·106	35	25	120	1 79	342	1000	1860	1661	$O_2 [mol l^{-1}] \cdot 10^6$	369	999	1050	2109	4001	76 03	17495	25438
SF6[mol l -1].106	28294	28292	28180	28541	28536	27339	26600	26402	SF ₆ [mol ℓ ⁻¹]·10 ⁶	26144	25650	25582	24727	23000	19472	15962	9054
k _{Ab} [s ⁻¹]·10 ⁷	518.6	396.6	1013.	1166 .	1337.	1 529 .	1604.	1574.	k _{Ab} [s ⁻¹]·10 ⁸	1277.	1669.	1686.	1831.	1 922 .	1973.	2020.	2034.
T [°C]	151.7	151.7	151.9	151.7	151.7	151.7	_		T [°C]	191.7	191.6	191.8	191.7	191.6	191.5	191.8	191.6
O ₂ [mol ℓ ⁻¹] ·10 ⁶	1291	2782	4546	11260	10855	24246			O2 [mol / -1] -106	25	26	72	154	237	354	790	1970
SF ₆ [mol ℓ ⁻¹]·10 ⁶	26568	24572	20795	17185	94581	0			SF ₆ [mol l ⁻¹]·10 ⁶	0	0	0	0	0	0	0	0
k _{Ab} [s ⁻¹]·10 ⁷	1556.	1611.	1652.	1646.	1669.	1637.	_		k _{Ab} [s ⁻¹]·10 ⁷	2684.	2743.	5139.	7466.	9011.	10830	16310	24700
T [°C]	161.5	161.5	161. 6	161.6	161.4	161.6	161.6	161.5	T [°C]	191.6	191.4	191.7	191.7	191.6	191.6	191.6	191.5
O ₂ [mol ℓ ⁻¹] ·10 ⁶	22	149	381	822	1310	1834	3285	9089	O ₂ [mol l ⁻¹] ·10 ⁶	3475	9150	17228	28924	29	29	158	169
SF ₆ [mol ℓ ⁻¹]·10 ⁶	0	0	0	0	0	0	0	0	SF ₆ [mol ℓ ⁻¹]·10 ⁶	0	0	0	0	25998	25926	25788	25863
k _{Ab} [s ⁻¹]·10 ⁷	406.3	984.3	1385.	1835.	2203.	2492.	3022.	3618.	k _{Ab} [s ⁻¹]·10 ⁸	3083.	3920.	4408.	4615.	401.2	409.2	1583.	1644.
T [°C]	161.5	161.7	161.7	161.9	161.5	161.4	161.6	161.8	T [°C]	191.5	191.6	191.4	191.6	191.6	191.4	192.2	191.8
$O_2 \text{ [mol } l^{-1}] \cdot 10^6$	15284	29455	30453	27487	35	4 4	188	420	O ₂ [mol l ⁻¹] ·10 ⁶	386	749	1708	3147	5171	6018	11699	10710
SF ₆ [mol ℓ ⁻¹]·10 ⁶	0	0	0	0	27741	27607	27443	27197	SF ₆ [mol / ⁻¹]·10 ⁶	25722	2 25129	24166	22382	19124	18961	15702	15675
k _{Ab} [s ⁻¹]·10 ⁷	3827.	4119.	4122.	4165.	933.8	1105.	2500.	3158.	k _{Ab} [s ⁻¹] 10 ⁸	257 2.	3262.	3867.	4217.	4335.	4329.	4725.	4563.
T [°C]	161.9	161.7	161.8	161.7	161.6	161.7	161.8	161.7	T [°C]	191.8	191.6	191.7	191.7				
$O_2 [mol \ell^{-1}] \cdot 10^6$	733	1540	3013	7314	10970	18264	28455	28453	$O_2 [mol \ell^{-1}] \cdot 10^6$	1172	15334	14558	28924				
SF ₆ [mol ℓ ⁻¹]·10 ⁶	26668	25798	23930	20296	16672	93858	0	0	SF ₆ [mol / ⁻¹]·10 ⁶	15609	9064	8631	0				
k _{Ab} -[s ⁻¹]·10 ⁸	3547.	3766,	3934.	4015.	4017.	4061.	4119.	4122.	k _{Ab} [s ⁻¹]·10 ⁸	4579.	4501.	4513.	4615.				
T [°C]	170.5	170.5	170.6	170.5	170.5	170.5	170.5	170.6	$T = 170.7^{\circ}C$	170.7	170.7	170.6	170.5	170.5	170.6	170.7	170.7
$O_2 [mol \ell^{-1}] \cdot 10^6$	7	21	10	51	61	147	234	364	$O_2 [mol \ell^{-1}] \cdot 10^6$	2895	7157	10632	20842	20424	364	363	351
$SF_6[mol \ell^{-1}] \cdot 10^6$	0	0	0	0	0	0	0	0	SF ₆ [mol l ⁻¹]·10 ⁶	2349	9 19908	8 16439	9232	564 6	0	3225	8691
k _{Ab} [s ⁻¹]·10 ⁷	304.3	714.3	428.2	1139.	1305.	1 794 .	2218.	2673.	k _{Ab} [s ⁻¹]·10 ⁷	8305	8622.	8573.	8646.	8515.	26 73.	5101.	5711.
T [°C]	170.7	170.7	170.8	170.7	170.7	170.8	170.7	170.7	T [°C]	170.6	170.6	170.7	170.7	170.7	170.7	170.6	
O ₂ [mol ℓ ⁻¹] ·10 ⁶	709	1774	3627	6448	9094	12439	18038	23665	$\frac{O_2 [\operatorname{mol} \ell^{-1}] \cdot 10^6}{}$	374	361	1774	1760	1560	1 799	1738	-
SF ₆ [mol l ⁻¹]·10 ⁶	0	0	0	0	0	0	0	0	$SF_6[mol \ell^{-1}] \cdot 10^6$	1770	2 26714	4 0	1875	7313	16258	25398	
k _{Ab} [s ⁻¹] 10 ⁷	3907.	5204.	6504.	7401.	7864.	81 92 .	8437.	8659.	k _{Ab} [s ⁻¹]·10 ⁷	6002	6041.	5204.	6312.	7333.	7914.	7967.	
T [°C]	170.8	170.6	170.4	170.7	170.7	170.6	170.6	170.6	т [°С]	181.1	181.1	181.1	18 1.1	181.1	181. 2	181.2	181.1
O ₂ [mol l ⁻¹] ·10 ⁶	29745	27028	44	55	201	361	1738	3063	O ₂ [mol / ⁻¹] ·10 ⁶	29	27	78	157	266	376	764	1651
SF6[mol 1-1]-106	0	0	27163	26992	26907	26714	25398	23541	SF6[mol l-1].106	0	0	0	0	0	0	0	0
k _{Ab} [s ⁻¹]·10 ⁷	888 6.	8677.	1894.	2215.	4896.	6041.	79 67.	8257.	k _{Ab} [s ⁻¹]·10 ⁷	1630	. 1585.	2815.	3806	4761.	5623.	7754.	10860

Tab. 5. Daten der Hydrierwärme-Messungen an 1

Titra- tions- geschwin- digkeit ^{a)}	Kataly- sator ^{b)} H ₂ - ^{c)} Ver- brauch		Energie ^{d)}	$-\Delta H_{ m H}{}^{ m e)}$	$-\Delta H_{\rm H}^{\rm e,f)}$
0.9046	0.0896	0.1797	6.1475 5 7160	68.42 68.62	
0.0520	0.0070	0.1000	5.7100	00.02	68.3 ± 0.1

^{a)} [mol·s⁻¹·10⁷]. - ^{b)} [g]. - ^{c)} [mol·s⁻¹·10⁶]. - ^{d)} [mcal·s⁻¹]. - ^{e)} [kcal·mol⁻¹]. - ^{f)} Korrigiert um Lösungswärme-Effekt.

CAS-Registry-Nummern

- 1a: 75960-13-3 / 2: 133647-98-0 / 3: 133645-00-8 / 4: 75993-15-6 / O2: 7782-44-7
- Y. Choi, K. D. Jordan, Y. H. Paik, W. Chang, P. Dowd, J. Am. Chem. Soc. 110 (1988) 7575, und dort zitierte Literatur.
 D. M. Lokensgrad, D. A. Dougherty, E. F. Hilinski, J. A. Berson, D. M. Lokensgrad, D. A. Dougherty, E. F. Hilinski, J. A. Berson,
- Proc. Natl. Acad. Sci. USA 77 (1980) 3090.
- ³⁾ D. A. Parks, Int. J. Chem. Kin. 9 (1977) 451; M. Keiffer, M. J. Pilling, M. J. C. Smith, J. Phys. Chem. 89 (1987) 6028, und dort zitierte Literatur.
- ⁴⁾ W. Grimme, L. Schumachers, W. R. Roth und R. Breuckmann, Chem. Ber. 114 (1981) 3197.
- ⁵⁾ G. B. Skinner, Introduction to Chemical Kinetics, Academic Press, New York 1974.

- ⁶⁾ $\sigma_a(O_2) = 3.6 Å^{19}$; $\sigma_b(2) \approx 5 Å$ (aus Modellen abgeschätzt); $F = 1/9^{20}$.

- ^{1/9⁻⁵³}.
 ⁷⁾ St. N. Demming, St. L. Morgan, Anal. Chem. 45 (1973) 278A.
 ⁸⁾ J. A. Nelder, R. Mead, Comput. J. 7 (1965) 368.
 ⁹⁾ U. Burker, N. L. Allinger, Molecular Mechanics, ACS Monograph 177, Washington 1982.
 ¹⁰⁾ W. R. Roth, O. Adamczak, R. Breuckmann, H.-W. Lennartz, R. Posse, Chem. Ber im Druck
- Boese, Chem. Ber. im Druck. ¹¹⁾ ^{11a} W. T. Borden, Diradicals, Kapitel 1, Academic Press, New York 1982, ^{11b} P. Du, W. T. Borden, J. Am. Chem. Soc. 109 (1987) 930.
- ¹²⁾ M. N. Burnett, R. Boothe, E. Clark, M. Gisin, H. M. Hassaneen, R. M. Pagni, G. Persy, R. J. Smith, J. Wirz, J. Am. Chem. Soc. 110 (1988) 2527, und dort zitierte Literatur.
- ¹³⁾ W. R. Roth, F. Bauer, R. Breuckmann, Chem. Ber. 124 (1991) 2041, voranstehend.
- ¹⁴⁾ P. Dowd, W. Chang, Y. H. Paik, J. Am. Chem. Soc. 108 (1986) 7416.
- ¹⁵ W. R. Roth, G. Erker, Angew. Chem. 85 (1973) 510; Angew. Chem. Int. Ed. Engl. 12 (1973) 503; P. Dowd, W. Chang, Y. H. Paik, J. Am. Chem. Soc. 109 (1987) 5284.
 ¹⁶ W. D. D. d. U. K. Scher, M. B. Baiagrauge, P. Sust.
- ¹⁶⁾ W. R. Roth, U. Kowalczik, G. Maier, H. P. Reisenauer, R. Sust-¹⁷ W. R. Roth, W. H. Lennartz, *Chem. Ber.* 113 (1980) 1806.
 ¹⁸ W. R. Roth, H.-W. Lennartz, W. v. E. Doering, W. R. Dolbier, J. C. Chem. J. Control 1992

- Jr. A. Rott, H. W. Lennartz, W. V. E. Doering, W. R. Dolbier, Jr., J. C. Schmidhauser, J. Am. Chem. Soc. 110 (1988) 1883.
 ¹⁹ S. W. Benson, Foundation of Chemical Kinetics, McGraw Hill, New York 1960.
- ²⁰⁾ O. L. Gijzeman, F. Kaufman, G. Porter, J. Chem. Soc., Faraday Trans. 2, 69 (1973) 708; R. D. Small, Jr., J. C. Scaiano, J. Am. Chem. Soc. 100 (1978) 4512.

[85/91]